17,686 research outputs found

    Nuclear response functions with finite range Gogny force: tensor terms and instabilities

    Full text link
    A fully-antisymmetrized random phase approximation calculation employing the continued fraction technique is performed to study nuclear matter response functions with the finite range Gogny force. The most commonly used parameter sets of this force, as well as some recent generalizations that include the tensor terms are considered and the corresponding response functions are shown. The calculations are performed at the first and second order in the continued fraction expansion and the explicit expressions for the second order tensor contributions are given. Comparison between first and second order continued fraction expansion results are provided. The differences between the responses obtained at the two orders turn to be more pronounced for the forces including tensor terms than for the standard Gogny ones. In the vector channels the responses calculated with Gogny forces including tensor terms are characterized by a large heterogeneity, reflecting the different choices for the tensor part of the interaction. For sake of comparison the response functions obtained considering a G-matrix based nuclear interaction are also shown. As first application of the present calculation, the possible existence of spurious finite-size instabilities of the Gogny forces with or without tensor terms has been investigated. The positive conclusion is that all the Gogny forces, but the GT2 one, are free of spurious finite-size instabilities. In perspective, the tool developed in the present paper can be inserted in the fitting procedure to construct new Gogny-type forces

    Second order reductions of the WDVV Equations related to classical Lie algebras

    Full text link
    We construct second order reductions of the generalized Witten-Dijkgraaf-Verlinde-Verlinde system based on simple Lie algebras. We discuss to what extent some of the symmetries of the WDVV system are preserved by the reduction.Comment: 6 pages, 1 tabl

    Multiparticle Quantum Superposition and Stimulated Entanglement by Parity Selective Amplification of Entangled States

    Full text link
    A multiparticle quantum superposition state has been generated by a novel phase-selective parametric amplifier of an entangled two-photon state. This realization is expected to open a new field of investigations on the persistence of the validity of the standard quantum theory for systems of increasing complexity, in a quasi decoherence-free environment. Because of its nonlocal structure the new system is expected to play a relevant role in the modern endeavor on quantum information and in the basic physics of entanglement.Comment: 13 pages and 3 figure

    The Giant Branches of Open and Globular Clusters in the Infrared as Metallicity Indicators: A Comparison with Theory

    Get PDF
    We apply the giant branch slope-[Fe/H] relation derived by Kuchinski et al. [AJ, 109, 1131 (1995)] to a sample of open clusters. We find that the slope of the giant branch in K vs. (J-K) color-magnitude diagrams correlates with [Fe/H] for open clusters as it does for metal-rich globular clusters but that the open cluster data are systematically shifted to less negative values of giant branch slope, at constant [Fe/H]. We use isochrone models to examine the theoretical basis for this relationship and find that for a given value of [Fe/H], the slope of the relationship remains constant with decreasing population age but the relation shifts to less negative values of giant branch slope with decreasing age. Both of these theoretical predictions agree with the trends found in the data. Finally, we derive new coefficients for the giant branch slope-[Fe/H] relation for specific members of 3 populations, metal-rich globular clusters, bulge stars and open clusters.Comment: 16 pages including 3 figures (AASTEX), AJ Accepted, also available at http://www.astronomy.ohio-state.edu/~martini/pubs.htm
    • …
    corecore